Protein signatures discriminate COVID-19 & sepsis with high accuracy

Background

COVID-19 remains a major public health challenge, requiring the development of tools to improve diagnosis and inform therapeutic decisions. As dysregulated inflammation and coagulation responses have been implicated in the pathophysiology of COVID-19 and sepsis, a team from the Karolinska Institute in Stockholm  studied the plasma proteome profiles of these diseases to delineate similarities from specific features. Using the Olink® Target 96 Immune Response, Inflammation and Organ Damage panels, they measured plasma proteins from COVID-19 patients in both the acute and convalescent phases, patients with sepsis from multiple sources, and healthy controls.

Outcome

Initial analysis identified 42 infection proteins linked to both COVID and sepsis, although cluster analysis indicated a higher proportion of markers associated with cytokine storms in the sepsis patients – e.g., levels of IL6, CXCL8, IL10, IL12, TNF, & IFNγ were lower in COVID patients compared to those with sepsis. Further data analysis also identified unique protein signatures associated with distinct microbiologic etiology and clinical endotypes. For example, comparing the differential expression profiles between patients with lung infections caused by SARS-CoV-2, influenza virus or bacteria revealed a shared response of 45 proteins, with 7, 6, and 5 unique proteins specific for the three pathogens.

Machine learning was then applied to the data to look for diagnostic markers to accurately discriminate COVID and sepsis. TRIM21, CASP8, NBN, FOXO1, PIK3AP1, PTN, and BID were chosen as the best markers for ML, resulting in multiple models with extremely high accuracy to discriminate COVID-19 & sepsis. Four of the top five models consisted of single proteins, the best being TRIM21 which had an AUC=1.00. All of the ML-derived protein models significantly out-performed all of the available clinical biomarkers. The final model consisted of four proteins, where higher levels of PTN and CSF1 predicted COVID-19, and higher levels of TRIM21 and CASP8 predicted sepsis.

These data extend the understanding of host responses underlying sepsis and COVID-19, indicating varying disease mechanisms with unique signatures. The diagnostic and severity signatures identified may be candidates for the development of personalized management of COVID-19 and sepsis.

Palma-Medina-et-al-2023

Citation

Palma Medina LM, Babačić H, Dzidic M, et al. Targeted plasma proteomics reveals signatures discriminating COVID-19 from sepsis with pneumonia. (2023) Respiratory Research, DOI: 10.1186/s12931-023-02364-y

Using machine learning, we identified a set of diagnostic plasma biomarkers that had very high accuracy in differentiating COVID-19 from CAP, and outperformed standard laboratory parameters used in clinical practice

Palma Medina et al. (2022)

Peer-reviewed publications citing the use of Olink panels

Olink’s Proximity Extension Assay (PEA) technology has been used for protein biomarker discovery and analysis across a very broad range of disease areas and applications, providing actionable insights into disease biology and helping to drive future development of new and better therapeutics. There are now well over 1000 publications citing the use of our assays and the list is growing rapidly. Please visit our library of publications to see some of the extraordinary work produced by Olink customers.

2947

Biomarker assays

~881 million

Protein data points generated

1281

Publications listed on website

Contact us!