Inflammation_II
Gene
CD5L
Uniprot
O43866
Protein
CD5 antigen-like
See alternative names IgM-associated peptide,
CT-2,
Apoptosis inhibitor expressed by macrophages,
SP-alpha
Uniprot Function Description
Secreted protein that acts as a key regulator of lipid synthesis: mainly expressed by macrophages in lymphoid and inflamed tissues and regulates mechanisms in inflammatory responses, such as infection or atherosclerosis. Able to inhibit lipid droplet size in adipocytes. Following incorporation into mature adipocytes via CD36-mediated endocytosis, associates with cytosolic FASN, inhibiting fatty acid synthase activity and leading to lipolysis, the degradation of triacylglycerols into glycerol and free fatty acids (FFA). CD5L-induced lipolysis occurs with progression of obesity: participates in obesity-associated inflammation following recruitment of inflammatory macrophages into adipose tissues, a cause of insulin resistance and obesity-related metabolic disease. Regulation of intracellular lipids mediated by CD5L has a direct effect on transcription regulation mediated by nuclear receptors ROR-gamma (RORC). Acts as a key regulator of metabolic switch in T-helper Th17 cells. Regulates the expression of pro-inflammatory genes in Th17 cells by altering the lipid content and limiting synthesis of cholesterol ligand of RORC, the master transcription factor of Th17-cell differentiation. CD5L is mainly present in non-pathogenic Th17 cells, where it decreases the content of polyunsaturated fatty acyls (PUFA), affecting two metabolic proteins MSMO1 and CYP51A1, which synthesize ligands of RORC, limiting RORC activity and expression of pro-inflammatory genes. Participates in obesity-associated autoimmunity via its association with IgM, interfering with the binding of IgM to Fcalpha/mu receptor and enhancing the development of long-lived plasma cells that produce high-affinity IgG autoantibodies (By similarity). Also acts as an inhibitor of apoptosis in macrophages: promotes macrophage survival from the apoptotic effects of oxidized lipids in case of atherosclerosis (PubMed:24295828). Involved in early response to microbial infection against various pathogens by acting as a pattern recognition receptor and by promoting autophagy (PubMed:16030018, PubMed:24223991, PubMed:24583716, PubMed:25713983).
Sample type
Human EDTA plasma and serum are the recommended sample types. Human citrate plasma and heparin plasma are also accepted. For other samples types e.g cerebrospinal fluid, (CSF), tissue or cell lysates please we recommend Olink Target 96 panels. Please note that protein expression levels are expected to vary in different sample types and certain assays may be affected by interfering substances such as hemolysate.
Precision
Precision (repeatability) is calculated from linearized NPX values over LOD.
Analytical measuring range
The technical data reported below refers to the measured value in the in vitro validation assays run using known concentrations of recombinant antigen. Please note that these figures are for reference only and CANNOT be used to convert NPX values to absolute concentrations for proteins measured in plasma or serum samples.
Dilution factor
For optimal assay readout, Olink Explore is run using different dilutions of the original samples (undiluted, 1:10, 1:100 or 1:1000). The dilution factor for this assay is noted below and should be taken into account when estimating the appropriate addressable biological concentration of the protein based on the in vitro validation data.
Sensitivity plot
The calibrator curve shown below visualizes the analytical measuring range data based on in vitro measurement of recombinant antigen. Please note that this is shown for reference only and CANNOT be used to convert NPX values to absolute concentrations for proteins measured in plasma or serum samples. The vertical dotted lines represent LLOQ and ULOQ respectively, and the horizontal line indicates the LOD.
Sample distribution plot
The plot below shows the levels of protein measured in a number of commercial plasma samples. Healthy subjects are shown in blue and samples obtained from patients with a range of diseases are shown in red. The latter include inflammatory, cardiovascular, autoimmune & neurological diseases, as well as cancer. The data is shown to give a general idea of the sort of data range to expect, but cannot cover all potential levels that may be seen in clinical samples.