INFLAMMATION
Gene
AGER
Uniprot
Q15109
Protein
Advanced glycosylation end product-specific receptor
See alternative names Receptor for advanced glycosylation end products
Uniprot Function Description
Mediates interactions of advanced glycosylation end products (AGE). These are nonenzymatically glycosylated proteins which accumulate in vascular tissue in aging and at an accelerated rate in diabetes. Acts as a mediator of both acute and chronic vascular inflammation in conditions such as atherosclerosis and in particular as a complication of diabetes. AGE/RAGE signaling plays an important role in regulating the production/expression of TNF-alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes. Interaction with S100A12 on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Interaction with S100B after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53/TP53 signaling (By similarity). Receptor for amyloid beta peptide. Contributes to the translocation of amyloid-beta peptide (ABPP) across the cell membrane from the extracellular to the intracellular space in cortical neurons. ABPP-initiated RAGE signaling, especially stimulation of p38 mitogen-activated protein kinase (MAPK), has the capacity to drive a transport system delivering ABPP as a complex with RAGE to the intraneuronal space. Can also bind oligonucleotides.
Sample type
Human EDTA plasma and serum are the recommended sample types. Human citrate plasma and heparin plasma are also accepted. For other samples types e.g cerebrospinal fluid, (CSF), tissue or cell lysates please we recommend Olink Target 96 panels. Please note that protein expression levels are expected to vary in different sample types and certain assays may be affected by interfering substances such as hemolysate.
Precision
Precision (repeatability) is calculated from linearized NPX values over LOD.
Analytical measuring range
The technical data reported below refers to the measured value in the in vitro validation assays run using known concentrations of recombinant antigen. Please note that these figures are for reference only and CANNOT be used to convert NPX values to absolute concentrations for proteins measured in plasma or serum samples.
Dilution factor
For optimal assay readout, Olink Explore is run using different dilutions of the original samples (undiluted, 1:10, 1:100 or 1:1000). The dilution factor for this assay is noted below and should be taken into account when estimating the appropriate addressable biological concentration of the protein based on the in vitro validation data.
Sensitivity plot
The calibrator curve shown below visualizes the analytical measuring range data based on in vitro measurement of recombinant antigen. Please note that this is shown for reference only and CANNOT be used to convert NPX values to absolute concentrations for proteins measured in plasma or serum samples. The vertical dotted lines represent LLOQ and ULOQ respectively, and the horizontal line indicates the LOD.
Sample distribution plot
The plot below shows the levels of protein measured in a number of commercial plasma samples. Healthy subjects are shown in blue and samples obtained from patients with a range of diseases are shown in red. The latter include inflammatory, cardiovascular, autoimmune & neurological diseases, as well as cancer. The data is shown to give a general idea of the sort of data range to expect, but cannot cover all potential levels that may be seen in clinical samples.
Biomarker Validation Data
Additional validation data, as well as a more detailed description of how the Olink panels are quality controlled can be found in our Data Validation documents – go to Document download center