INFLAMMATION
Gene
TNFRSF14
Uniprot
Q92956
Protein
Tumor necrosis factor receptor superfamily member 14
See alternative names Tumor necrosis factor receptor-like 2,
Herpes virus entry mediator A
Uniprot Function Description
(Microbial infection) Acts as a receptor for Herpes simplex virus 2/HHV-2.
(Microbial infection) Acts as a receptor for Herpes simplex virus 1/HHV-1.
Receptor for four distinct ligands: The TNF superfamily members TNFSF14/LIGHT and homotrimeric LTA/lymphotoxin-alpha and the immunoglobulin superfamily members BTLA and CD160, altogether defining a complex stimulatory and inhibitory signaling network (PubMed:9462508, PubMed:10754304, PubMed:18193050, PubMed:23761635). Signals via the TRAF2-TRAF3 E3 ligase pathway to promote immune cell survival and differentiation (PubMed:19915044, PubMed:9153189, PubMed:9162022). Participates in bidirectional cell-cell contact signaling between antigen presenting cells and lymphocytes. In response to ligation of TNFSF14/LIGHT, delivers costimulatory signals to T cells, promoting cell proliferation and effector functions (PubMed:10754304). Interacts with CD160 on NK cells, enhancing IFNG production and anti-tumor immune response (PubMed:23761635). In the context of bacterial infection, acts as a signaling receptor on epithelial cells for CD160 from intraepithelial lymphocytes, triggering the production of antimicrobial proteins and proinflammatory cytokines (By similarity). Upon binding to CD160 on activated CD4+ T cells, downregulates CD28 costimulatory signaling, restricting memory and alloantigen-specific immune response (PubMed:18193050). May interact in cis (on the same cell) or in trans (on other cells) with BTLA (PubMed:19915044) (By similarity). In cis interactions, appears to play an immune regulatory role inhibiting in trans interactions in naive T cells to maintain a resting state. In trans interactions, can predominate during adaptive immune response to provide survival signals to effector T cells (PubMed:19915044) (By similarity).
Sample type
Human EDTA plasma and serum are the recommended sample types. Human citrate plasma and heparin plasma are also accepted. For other samples types e.g cerebrospinal fluid, (CSF), tissue or cell lysates please we recommend Olink Target 96 panels. Please note that protein expression levels are expected to vary in different sample types and certain assays may be affected by interfering substances such as hemolysate.
Precision
Precision (repeatability) is calculated from linearized NPX values over LOD.
Analytical measuring range
The technical data reported below refers to the measured value in the in vitro validation assays run using known concentrations of recombinant antigen. Please note that these figures are for reference only and CANNOT be used to convert NPX values to absolute concentrations for proteins measured in plasma or serum samples.
Dilution factor
For optimal assay readout, Olink Explore is run using different dilutions of the original samples (undiluted, 1:10, 1:100 or 1:1000). The dilution factor for this assay is noted below and should be taken into account when estimating the appropriate addressable biological concentration of the protein based on the in vitro validation data.
Sensitivity plot
The calibrator curve shown below visualizes the analytical measuring range data based on in vitro measurement of recombinant antigen. Please note that this is shown for reference only and CANNOT be used to convert NPX values to absolute concentrations for proteins measured in plasma or serum samples. The vertical dotted lines represent LLOQ and ULOQ respectively, and the horizontal line indicates the LOD.
Sample distribution plot
The plot below shows the levels of protein measured in a number of commercial plasma samples. Healthy subjects are shown in blue and samples obtained from patients with a range of diseases are shown in red. The latter include inflammatory, cardiovascular, autoimmune & neurological diseases, as well as cancer. The data is shown to give a general idea of the sort of data range to expect, but cannot cover all potential levels that may be seen in clinical samples.
Biomarker Validation Data
Additional validation data, as well as a more detailed description of how the Olink panels are quality controlled can be found in our Data Validation documents – go to Document download center