Neurology_II
Gene
C1QBP
Uniprot
Q07021
Protein
Complement component 1 Q subcomponent-binding protein, mitochondrial
See alternative names p33,
gC1q-R protein,
Mitochondrial matrix protein p32,
Hyaluronan-binding protein 1,
Glycoprotein gC1qBP,
ASF/SF2-associated protein p32
Uniprot Function Description
Is believed to be a multifunctional and multicompartmental protein involved in inflammation and infection processes, ribosome biogenesis, protein synthesis in mitochondria, regulation of apoptosis, transcriptional regulation and pre-mRNA splicing. At the cell surface is thought to act as an endothelial receptor for plasma proteins of the complement and kallikrein-kinin cascades. Putative receptor for C1q; specifically binds to the globular 'heads' of C1q thus inhibiting C1; may perform the receptor function through a complex with C1qR/CD93. In complex with cytokeratin-1/KRT1 is a high affinity receptor for kininogen-1/HMWK. Can also bind other plasma proteins, such as coagulation factor XII leading to its autoactivation. May function to bind initially fluid kininogen-1 to the cell membrane. The secreted form may enhance both extrinsic and intrinsic coagulation pathways. It is postulated that the cell surface form requires docking with transmembrane proteins for downstream signaling which might be specific for a cell-type or response. By acting as C1q receptor is involved in chemotaxis of immature dendritic cells and neutrophils and is proposed to signal through CD209/DC-SIGN on immature dendritic cells, through integrin alpha-4/beta-1 during trophoblast invasion of the decidua, and through integrin beta-1 during endothelial cell adhesion and spreading. Signaling involved in inhibition of innate immune response is implicating the PI3K-AKT/PKB pathway. Required for protein synthesis in mitochondria (PubMed:28942965). In mitochondrial translation may be involved in formation of functional 55S mitoribosomes; the function seems to involve its RNA-binding activity. May be involved in the nucleolar ribosome maturation process; the function may involve the exchange of FBL for RRP1 in the association with pre-ribosome particles. Involved in regulation of RNA splicing by inhibiting the RNA-binding capacity of SRSF1 and its phosphorylation. Is required for the nuclear translocation of splicing factor U2AF1L4. Involved in regulation of CDKN2A- and HRK-mediated apoptosis. Stabilizes mitochondrial CDKN2A isoform smARF. May be involved in regulation of FOXC1 transcriptional activity and NFY/CCAAT-binding factor complex-mediated transcription. May play a role in antibacterial defense as it can bind to cell surface hyaluronan and inhibit Streptococcus pneumoniae hyaluronate lyase. May be involved in modulation of the immune response; ligation by HCV core protein is resulting in suppression of interleukin-12 production in monocyte-derived dendritic cells. Involved in regulation of antiviral response by inhibiting DDX58- and IFIH1-mediated signaling pathways probably involving its association with MAVS after viral infection.
(Microbial infection) Involved in HIV-1 replication, presumably by contributing to splicing of viral RNA.
(Microbial infection) In infection processes acts as an attachment site for microbial proteins, including Listeria monocytogenes internalin B (InlB) and Staphylococcus aureus protein A.
(Microbial infection) Involved in replication of Rubella virus.
Sample type
Human EDTA plasma and serum are the recommended sample types. Human citrate plasma and heparin plasma are also accepted. For other samples types e.g cerebrospinal fluid, (CSF), tissue or cell lysates please we recommend Olink Target 96 panels. Please note that protein expression levels are expected to vary in different sample types and certain assays may be affected by interfering substances such as hemolysate.
Precision
Precision (repeatability) is calculated from linearized NPX values over LOD.
Analytical measuring range
The technical data reported below refers to the measured value in the in vitro validation assays run using known concentrations of recombinant antigen. Please note that these figures are for reference only and CANNOT be used to convert NPX values to absolute concentrations for proteins measured in plasma or serum samples.
Dilution factor
For optimal assay readout, Olink Explore is run using different dilutions of the original samples (undiluted, 1:10, 1:100 or 1:1000). The dilution factor for this assay is noted below and should be taken into account when estimating the appropriate addressable biological concentration of the protein based on the in vitro validation data.
Sensitivity plot
The calibrator curve shown below visualizes the analytical measuring range data based on in vitro measurement of recombinant antigen. Please note that this is shown for reference only and CANNOT be used to convert NPX values to absolute concentrations for proteins measured in plasma or serum samples. The vertical dotted lines represent LLOQ and ULOQ respectively, and the horizontal line indicates the LOD.
Sample distribution plot
The plot below shows the levels of protein measured in a number of commercial plasma samples. Healthy subjects are shown in blue and samples obtained from patients with a range of diseases are shown in red. The latter include inflammatory, cardiovascular, autoimmune & neurological diseases, as well as cancer. The data is shown to give a general idea of the sort of data range to expect, but cannot cover all potential levels that may be seen in clinical samples.
Biomarker Validation Data
Additional validation data, as well as a more detailed description of how the Olink panels are quality controlled can be found in our Data Validation documents – go to Document download center