Olink

Olink®
Part of Thermo Fisher Scientific

ONCOLOGY

Gene
MDK

Uniprot
P21741

Protein
Midkine

See alternative names Amphiregulin-associated protein,
Midgestation and kidney protein,
Neurite outgrowth-promoting factor 2,
Neurite outgrowth-promoting protein

Uniprot Function Description

Secreted protein that functions as cytokine and growth factor and mediates its signal through cell-surface proteoglycan and non-proteoglycan receptors (PubMed:18469519, PubMed:12573468, PubMed:12122009, PubMed:10212223, PubMed:24458438, PubMed:15466886, PubMed:12084985, PubMed:10772929). Binds cell-surface proteoglycan receptors via their chondroitin sulfate (CS) groups (PubMed:12084985, PubMed:10212223). Thereby regulates many processes like inflammatory response, cell proliferation, cell adhesion, cell growth, cell survival, tissue regeneration, cell differentiation and cell migration (PubMed:12573468, PubMed:12122009, PubMed:10212223, PubMed:10683378, PubMed:24458438, PubMed:22323540, PubMed:12084985, PubMed:15466886, PubMed:10772929). Participates in inflammatory processes by exerting two different activities. Firstly, mediates neutrophils and macrophages recruitment to the sites of inflammation both by direct action by cooperating namely with ITGB2 via LRP1 and by inducing chemokine expression (PubMed:10683378, PubMed:24458438). This inflammation can be accompanied by epithelial cell survival and smooth muscle cell migration after renal and vessel damage, respectively (PubMed:10683378). Secondly, suppresses the development of tolerogenic dendric cells thereby inhibiting the differentiation of regulatory T cells and also promote T cell expansion through NFAT signaling and Th1 cell differentiation (PubMed:22323540). Promotes tissue regeneration after injury or trauma. After heart damage negatively regulates the recruitment of inflammatory cells and mediates cell survival through activation of anti-apoptotic signaling pathways via MAPKs and AKT pathways through the activation of angiogenesis (By similarity). Also facilitates liver regeneration as well as bone repair by recruiting macrophage at trauma site and by promoting cartilage development by facilitating chondrocyte differentiation (By similarity). Plays a role in brain by promoting neural precursor cells survival and growth through interaction with heparan sulfate proteoglycans (By similarity). Binds PTPRZ1 and promotes neuronal migration and embryonic neurons survival (PubMed:10212223). Binds SDC3 or GPC2 and mediates neurite outgrowth and cell adhesion (PubMed:12084985, PubMed:1768439). Binds chondroitin sulfate E and heparin leading to inhibition of neuronal cell adhesion induced by binding with GPC2 (PubMed:12084985). Binds CSPG5 and promotes elongation of oligodendroglial precursor-like cells (By similarity). Also binds ITGA6:ITGB1 complex; this interaction mediates MDK-induced neurite outgrowth (PubMed:15466886, PubMed:1768439). Binds LRP1; promotes neuronal survival (PubMed:10772929). Binds ITGA4:ITGB1 complex; this interaction mediates MDK-induced osteoblast cells migration through PXN phosphorylation (PubMed:15466886). Binds anaplastic lymphoma kinase (ALK) which induces ALK activation and subsequent phosphorylation of the insulin receptor substrate (IRS1), followed by the activation of mitogen-activated protein kinase (MAPK) and PI3-kinase, and the induction of cell proliferation (PubMed:12122009). Promotes epithelial to mesenchymal transition through interaction with NOTCH2 (PubMed:18469519). During arteriogenesis, plays a role in vascular endothelial cell proliferation by inducing VEGFA expression and release which in turn induces nitric oxide synthase expression. Moreover activates vasodilation through nitric oxide synthase activation (By similarity). Negatively regulates bone formation in response to mechanical load by inhibiting Wnt/beta-catenin signaling in osteoblasts (By similarity). In addition plays a role in hippocampal development, working memory, auditory response, early fetal adrenal gland development and the female reproductive system (By similarity).

Sample type

Human EDTA plasma and serum are the recommended sample types. Human citrate plasma and heparin plasma are also accepted. For other samples types e.g cerebrospinal fluid, (CSF), tissue or cell lysates please we recommend Olink Target 96 panels. Please note that protein expression levels are expected to vary in different sample types and certain assays may be affected by interfering substances such as hemolysate.

Precision

Precision (repeatability) is calculated from linearized NPX values over LOD.

Within run precision Coefficient of Variation (CV)
8%
Between run precision Coefficient of Variation (CV)
14%

Dilution factor

For optimal assay readout, Olink Explore is run using different dilutions of the original samples (undiluted, 1:10, 1:100 or 1:1000). The dilution factor for this assay is noted below and should be taken into account when estimating the appropriate addressable biological concentration of the protein based on the in vitro validation data.

Dilution factor
1:10

Sample distribution plot

The plot below shows the levels of protein measured in a number of commercial plasma samples. Healthy subjects are shown in blue and samples obtained from patients with a range of diseases are shown in red. The latter include inflammatory, cardiovascular, autoimmune & neurological diseases, as well as cancer. The data is shown to give a general idea of the sort of data range to expect, but cannot cover all potential levels that may be seen in clinical samples.

121086420−2−4−6NPXControl SamplesDisease Samples

Biomarker Validation Data

Additional validation data, as well as a more detailed description of how the Olink panels are quality controlled can be found in our Data Validation documents – go to Document download center

Search all Biomarkers