Olink

Olink®
Part of Thermo Fisher Scientific

Target 96 Cardiovascular II

Gene
PARP1

Uniprot
P09874

Protein
Poly [ADP-ribose] polymerase 1

See alternative names DNA ADP-ribosyltransferase PARP1,
ADP-ribosyltransferase diphtheria toxin-like 1,
NAD(+) ADP-ribosyltransferase 1,
Poly[ADP-ribose] synthase 1,
Protein poly-ADP-ribosyltransferase PARP1

Uniprot Function Description

Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:25043379, PubMed:26344098). Mainly mediates glutamate and aspartate ADP-ribosylation of target proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of glutamate and aspartate residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:7852410, PubMed:9315851, PubMed:19764761, PubMed:25043379). Mediates the poly(ADP-ribosyl)ation of a number of proteins, including itself, APLF and CHFR (PubMed:17396150, PubMed:19764761). Also mediates serine ADP-ribosylation of target proteins following interaction with HPF1; HPF1 conferring serine specificity (PubMed:28190768). Probably also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:30257210). Catalyzes the poly-ADP-ribosylation of histones in a HPF1-dependent manner (PubMed:27067600). Involved in the base excision repair (BER) pathway by catalyzing the poly-ADP-ribosylation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272). ADP-ribosylation follows DNA damage and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). Acts as a regulator of transcription: positively regulates the transcription of MTUS1 and negatively regulates the transcription of MTUS2/TIP150 (PubMed:19344625). With EEF1A1 and TXK, forms a complex that acts as a T-helper 1 (Th1) cell-specific transcription factor and binds the promoter of IFN-gamma to directly regulate its transcription, and is thus involved importantly in Th1 cytokine production (PubMed:17177976). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257).

Sample type

Recommended sample types are EDTA plasma and serum. A range of additional sample types are compatible with the technology (PEA), including citrate plasma, heparin plasma, cerebrospinal fluid, (CSF), tissue and cell lysates, fine needle biopsies, microdialysis fluid, cell culture media, dried blood spots, synovial fluid, saliva, plaque extract and microvesicles. Please note that protein expression levels are expected to vary in different sample types. Certain assays are differentially affected by interfering substances such as hemolysate. Download any of our Data Validation documents or contact support@olink.com for more information.

Precision

Precision (repeatability) is calculated from linearized NPX values over LOD.

Within run precision Coefficient of Variation (CV)
9%
Between run precision Coefficient of Variation (CV)
11%

Analytical measuring range

The technical data reported below refers to the measured value in the in vitro validation assays run using known concentrations of recombinant antigen. Please note that these figures are for reference only and CANNOT be used to convert NPX values to absolute concentrations for proteins measured in plasma or serum samples.

LOD (pg/mL)
61.0
LLOQ (pg/mL)
122.1
ULOQ (pg/mL)
125000
Hook (pg/mL)
125000
Range (logs)
3

Sensitivity plot

The calibrator curve shown below visualizes the analytical measuring range data based on in vitro measurement of recombinant antigen. Please note that this is shown for reference only and CANNOT be used to convert NPX values to absolute concentrations for proteins measured in plasma or serum samples. The vertical dotted lines represent LLOQ and ULOQ respectively, and the horizontal line indicates the LOD.

SensitivityPlot

Biomarker Validation Data

Additional validation data, as well as a more detailed description of how the Olink panels are quality controlled can be found in our Data Validation documents – go to Document download center

Search all Biomarkers