Target 96 Organ Damage
Gene
FGR
Uniprot
P09769
Protein
Tyrosine-protein kinase Fgr
See alternative names p58-Fgr,
p58c-Fgr,
Proto-oncogene c-Fgr,
Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog,
p55-Fgr
Uniprot Function Description
Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors devoid of kinase activity and contributes to the regulation of immune responses, including neutrophil, monocyte, macrophage and mast cell functions, cytoskeleton remodeling in response to extracellular stimuli, phagocytosis, cell adhesion and migration. Promotes mast cell degranulation, release of inflammatory cytokines and IgE-mediated anaphylaxis. Acts downstream of receptors that bind the Fc region of immunoglobulins, such as MS4A2/FCER1B, FCGR2A and/or FCGR2B. Acts downstream of ITGB1 and ITGB2, and regulates actin cytoskeleton reorganization, cell spreading and adhesion. Depending on the context, activates or inhibits cellular responses. Functions as negative regulator of ITGB2 signaling, phagocytosis and SYK activity in monocytes. Required for normal ITGB1 and ITGB2 signaling, normal cell spreading and adhesion in neutrophils and macrophages. Functions as positive regulator of cell migration and regulates cytoskeleton reorganization via RAC1 activation. Phosphorylates SYK (in vitro) and promotes SYK-dependent activation of AKT1 and MAP kinase signaling. Phosphorylates PLD2 in antigen-stimulated mast cells, leading to PLD2 activation and the production of the signaling molecules lysophosphatidic acid and diacylglycerol. Promotes activation of PIK3R1. Phosphorylates FASLG, and thereby regulates its ubiquitination and subsequent internalization. Phosphorylates ABL1. Promotes phosphorylation of CBL, CTTN, PIK3R1, PTK2/FAK1, PTK2B/PYK2 and VAV2. Phosphorylates HCLS1 that has already been phosphorylated by SYK, but not unphosphorylated HCLS1. Together with CLNK, it acts as a negative regulator of natural killer cell-activating receptors and inhibits interferon-gamma production (By similarity).
Sample type
Recommended sample types are EDTA plasma and serum. A range of additional sample types are compatible with the technology (PEA), including citrate plasma, heparin plasma, cerebrospinal fluid, (CSF), tissue and cell lysates, fine needle biopsies, microdialysis fluid, cell culture media, dried blood spots, synovial fluid, saliva, plaque extract and microvesicles. Please note that protein expression levels are expected to vary in different sample types. Certain assays are differentially affected by interfering substances such as hemolysate. Download any of our Data Validation documents or contact support@olink.com for more information.
Precision
Precision (repeatability) is calculated from linearized NPX values over LOD.
Analytical measuring range
The technical data reported below refers to the measured value in the in vitro validation assays run using known concentrations of recombinant antigen. Please note that these figures are for reference only and CANNOT be used to convert NPX values to absolute concentrations for proteins measured in plasma or serum samples.
Sensitivity plot
The calibrator curve shown below visualizes the analytical measuring range data based on in vitro measurement of recombinant antigen. Please note that this is shown for reference only and CANNOT be used to convert NPX values to absolute concentrations for proteins measured in plasma or serum samples. The vertical dotted lines represent LLOQ and ULOQ respectively, and the horizontal line indicates the LOD.
Biomarker Validation Data
Additional validation data, as well as a more detailed description of how the Olink panels are quality controlled can be found in our Data Validation documents – go to Document download center