Association between prenatal immune phenotyping and cord blood leukocyte telomere length in the PRISM pregnancy cohort
Environmental Research, 2020
Colicino E., Cowell W., Bozack A., Foppa Pedretti N., Joshi A., Niedzwiecki M., Bollati V., Berin C., Wright R., Wright R.
Disease area | Application area | Sample type | Products |
---|---|---|---|
Environmental Health & Toxicology Inflammatory Diseases | Pathophysiology | Serum | Olink Target 96 |
Abstract
Background
Environmental exposures including air pollutants, toxic metals, and psychosocial stress have been associated with shorter telomere length (TL) in newborns. These exposures have in turn been linked to an enhanced inflammatory immune response. Increased inflammation during pregnancy may be a central biological pathway linking environmental factors with reduced TL at birth. Approaches that more comprehensively characterize the prenatal inflammatory milieu rather than targeting specific individual cytokines in relation to newborn TL may better elucidate inflammatory mechanisms.
Methods
Analyses included 129 mother-child dyads enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) pregnancy cohort. We measured 92 inflammation related proteins during pregnancy in maternal serum using the Olink protein array and quantified cord blood relative leukocyte TL (rLTL) via qPCR. We leveraged a tree-based machine learning algorithm to select the most important inflammatory related proteins jointly associated with rLTL. We then evaluated the combined association between the selected proteins with rLTL using Bayesian Weighted Quantile Sum (BWQS) Regression. Analyses were adjusted for gestational week of serum collection, maternal race/ethnicity, age, and education, and fetal sex. We evaluated major biological function of the identified proteins by using the UniProtKB, a centralized repository of curated functional information.
Results
Three proteins were negatively and linearly associated with rLTL (CASP8 β: -0.22 p = 0.008, BNGF β: -0.43 p = 0.033, TRANCE β: 0.38 p = 0.004). Results from BWQS regression showed a significant overall decrease in rLTL (β: -0.26 95%CrI: -0.43, −0.07) per quartile increase of the mixture, with CASP8 contributing the greatest weight (CASP8 50%; BNGF 27%, and TRANCE 23%). The identified proteins were involved in the regulation of apoptotic processes and cell proliferation.
Conclusions
This proteomics approach identifies novel maternal prenatal inflammatory protein biomarkers associated with shortened rLTL in newborns.