Olink

Olink®
Part of Thermo Fisher Scientific

Differential downstream signaling in microglia lacking Alzheimer’s-related TREM2 or its adaptor TYROBP/DAP12

Molecular Neurodegeneration Advances, 2026

Farias Quipildor G., Belfiore R., Althobaiti K., Najarzadeh Z., Glabe C., Readhead B., Gandy S., Salton S., Ehrlich M.

Disease areaApplication areaSample typeProducts
Neurology
Pathophysiology
Mouse Cell Culture Supernatant
Olink Target 96 Mouse

Olink Target 96 Mouse

Abstract

Microglia, the primary immune cell in the brain, have multiple activation phenotypes involved in broad functions within the brain, playing roles in neurotoxicity/neuroprotection, release of inflammatory and anti-inflammatory cytokines, and in cell survival, proliferation, and phagocytosis. TREM2 and TYROBP form a transmembrane complex in microglia that modulates intracellular signaling networks, and these proteins are essential regulators of the transition from homeostatic to activated microglia. Recent findings support a TREM2-independent molecular signature that is involved in the early transition of homeostatic to disease-associated microglia (DAM), with the next sequential step of DAM activation from stage 1 to stage 2 being TREM2-dependent. However, the underlying mechanisms determining how TREM2 or TYROBP regulate these downstream phenotypes are largely unknown. We isolated primary microglia from C57BL/6 wild-type (WT) controls, Trem2 knock-out (KO), and Tyrobp KO mice at post-natal day 0–3. Cells were treated with Alzheimer’s disease (AD)-relevant stimuli, such as amyloid beta (Aβ) oligomers or fibrils, or ‘neuroinflammatory-like’ stimuli, such as lipopolysaccharide (LPS). We explored protein and gene expression in the presence or absence of inhibitors of the TREM2/TYROBP downstream signaling pathway. We also performed a high-throughput Olink proteomic analysis of conditioned media from WT, Trem2 KO, and Tyrobp KO stimulated with either LPS or Aβ oligomers or fibrils. Our results show that the absence of either TREM2 or TYROBP is associated with increased basal levels of phosphorylated ERK in primary microglia compared to WT controls. In addition, Trem2 KO and Tyrobp KO cells show a less ramified cell morphology at baseline, as compared to WT microglia. Moreover, stimulating primary microglia with either Aβ oligomers or LPS leads to differential protein and gene expression in cells lacking TREM2 or TYROBP. The dysregulated downstream signal transduction and morphology in the absence of TREM2 or TYROBP suggest their essential roles not only in microglial homeostasis but also in their activation in response to different stimuli.

Graphical abstract

Read publication ↗