Olink

Olink®
Part of Thermo Fisher Scientific

Disruption of monocyte-macrophage differentiation and trafficking by a heme analog during active inflammation

Mucosal Immunology, 2021

Schaefer R., Callahan R., Atif S., Orlicky D., Cartwright I., Fontenot A., Colgan S., Onyiah J.

Disease areaApplication areaSample typeProducts
Immunological & Inflammatory Diseases
Pathophysiology
Tissue Homogentate
Olink Target 96 Mouse

Olink Target 96 Mouse

Abstract

Heme metabolism is a key regulator of inflammatory responses. Cobalt protoporphyrin IX (CoPP) is a heme analog and mimic that potently activates the NRF2/heme oxygenase-1 (HO-1) pathway, especially in monocytes and macrophages. We investigated the influence of CoPP on inflammatory responses using a murine model of colitis. Surprisingly, conditional deletion of myeloid HO-1 did not impact the colonic inflammatory response or the protective influence of CoPP in the setting of dextran sodium sulfate-induced colitis. Rather, we reveal that CoPP elicits a contradictory shift in blood myeloid populations relative to the colon during active intestinal inflammation. Major population changes include markedly diminished trafficking of CCR2+Ly6Chi monocytes to the inflamed colon, despite significant mobilization of this population into circulation. This resulted in significantly diminished colonic expansion of monocyte-derived macrophages and inflammatory cytokine expression. These findings were linked with significant induction of systemic CCL2 leading to a disrupted CCL2 chemoattractant gradient toward the colon and concentration-dependent suppression of circulating monocyte CCR2 expression. Administration of CoPP also induced macrophage differentiation toward a MarcohiHmox1hi anti-inflammatory erythrophagocytic phenotype, contributing to an overall decreased inflammatory profile. Such findings redefine protective influences of heme metabolism during inflammation, and highlight previously unreported immunosuppressive mechanisms of endogenous CCL2 induction.

Read publication ↗