Olink

Olink®
Part of Thermo Fisher Scientific

IL-1 receptor–associated kinase-3 acts as an immune checkpoint in myeloid cells to limit cancer immunotherapy

Journal of Clinical Investigation, 2023

Tunalı G., Rúbies Bedós M., Nagarajan D., Fridh P., Papakyriacou I., Mao Y.

Disease areaApplication areaSample typeProducts
Oncology
Immunotherapy
Pathophysiology
Cell Culture Supernatant
Olink Target 96

Olink Target 96

Abstract

Inflammatory mediators released by cancer cells promote the induction of immune suppression and tolerance in myeloid cells. Interleukin-1 receptor-associated kinase-3 (IRAK3) is a pseudokinase that inhibits IL-1/TLR signaling but its role in patients treated with immune checkpoint blockade (ICB) therapy remains unclear. Using RNAseq data from the IMvigor210 trial, we found that tumors with high IRAK3 expressions showed enriched anti-inflammatory pathways and worse clinical response to ICB therapy. Upon IRAK3 protein deletion with CRISPR/Cas9, primary human monocytes displayed altered global protein expression and phosphorylation in quantitative proteomics and released more pro-inflammatory cytokines in response to stimulation. Bone-marrow derived macrophages from an IRAK3 CRISPR knockout (KO) mouse model demonstrated a pro-inflammatory phenotype and enhanced sensitivity to TLR agonists, compared to wild-type cells. IRAK3 deficiency delayed the growth of carcinogen-induced and oncogene-driven murine cancer cells and induced enhanced activation in myeloid cells and T cells. Upon ICB treatment, IRAK3 KO mice showed enrichment of TCF1+PD-1+ stem-like memory CD8+ T cells and resulted in superior growth inhibition of immunologically cold tumors in vivo. Altogether, our study demonstrated a novel cancer-driven immune tolerance program controlled by IRAK3 in humans and mice and proposed its suitability as an immunotherapy target.

Read publication ↗