Olink

Olink®
Part of Thermo Fisher Scientific

Intercorrelation of physiological seizure parameters and hormonal changes in electroconvulsive therapy

Nordic Journal of Psychiatry, 2022

Thörnblom E., Gingnell M., Cunningham J., Landén M., Bodén R.

Disease areaApplication areaSample typeProducts
Neurology
Pathophysiology
Serum
Olink Target 96

Olink Target 96

Abstract

Objective: Physiological parameters that predict electroconvulsive therapy (ECT) effectiveness may reflect propagation of the induced epileptic seizure. As an indication of seizure propagation to the diencephalon, we here examined the correlation between prolactin increase after ECT and clinical seizure evaluation parameters, focusing on peak heart rate. As a proxy for peripheral endocrine stress response, we examined the correlation to postictal cortisol increase.

Methods: Participants were consecutively recruited from clinical ECT patients (n = 131, age 18-85 years). The first ECT session in a series was examined. For each participant, blood serum concentrations of prolactin and cortisol were measured immediately before and within 30 min after the seizure. Physiological parameters were extracted from clinical records: peak heart rate (HR) during seizure, electroencephalography (EEG) seizure duration, and motor seizure duration. Correlations were calculated using non-parametric tests.

Results: Serum prolactin increased after ECT and correlated with peak HR, EEG seizure duration, and motor seizure duration. Peak HR during seizure also correlated positively with both EEG seizure duration and motor seizure duration. Correlations were unaffected by age, sex, baseline prolactin levels, antipsychotics, or beta-blocking agents. Serum cortisol increased after ECT but did not correlate with the seizure evaluation parameters, nor with prolactin concentrations.

Conclusions: Our findings of a positive correlation between peak HR and prolactin that was independent from the peripheral endocrine stress response might be in line with the idea that tachycardia during ECT seizures reflects seizure propagation to the diencephalon. This supports the practice of monitoring cardiovascular response for ECT seizure evaluation.

Read publication ↗