Olink

Olink®
Part of Thermo Fisher Scientific

Lower levels of Th1 and Th2 cytokines in cerebrospinal fluid (CSF) at the time of initial CSF shunt placement in children are associated with subsequent shunt revision surgeries

Cytokine, 2023

Simon T., Sedano S., Rosenberg-Hasson Y., Durazo-Arvizu R., Whitlock K., Hodor P., Hauptman J., Limbrick D., McDonald P., Ojemann J., Maecker H.

Disease areaApplication areaSample typeProducts
Neurology
Patient Stratification
CSF
Olink Target 96

Olink Target 96

Abstract

Objective
We compare cytokine profiles at the time of initial CSF shunt placement between children who required no subsequent shunt revision surgeries and children requiring repeated CSF shunt revision surgeries for CSF shunt failure. We also describe the cytokine profiles across surgical episodes for children who undergo multiple subsequent revision surgeries.

Methods
This pilot study was nested within an ongoing prospective multicenter study collecting CSF samples and clinical data at the time of CSF shunt surgeries since August 2014. We selected cases where CSF was available for children who underwent an initial CSF shunt placement and had no subsequent shunt revision surgeries during >=24 months of follow-up (n = 7); as well as children who underwent an initial CSF shunt placement and then required repeated CSF shunt revision surgeries (n = 3). Levels of 92 human cytokines were measured using the Olink immunoassay and 41 human cytokines were measured using Luminex based bead array on CSF obtained at the time of each child’s initial CSF shunt placement and were displayed in heat maps.

Results
Qualitatively similar profiles for the majority of cytokines were observed among the patients in each group in both Olink and Luminex assays. Lower levels of MCP-3, CASP-8, CD5, CXCL9, CXCL11, eotaxin, IFN-γ, IL-13, IP-10, and OSM at the time of initial surgery were noted in the children who went on to require multiple surgeries. Pro- and anti-inflammatory cytokines were selected a priori and shown across subsequent revision surgeries for the 3 patients. Cytokine patterns differed between patients, but within a given patient pro-inflammatory and anti-inflammatory cytokines acted in a parallel fashion, with the exception of IL-4.

Conclusions
Heat maps of cytokine levels at the time of initial CSF shunt placement for each child undergoing only a single initial CSF shunt placement and for each child undergoing repeat CSF shunt revision surgeries demonstrated qualitatively similar profiles for the majority of cytokines. Lower levels of MCP-3, CASP-8, CD5, CXCL9, CXCL11, eotaxin, IFN-γ, IL-13, IP-10, and OSM at the time of initial surgery were noted in the children who went on to require multiple surgeries. Better stratification by patient age, etiology, and mechanism of failure is needed to develop a deeper understanding of the mechanism of inflammation in the development of hydrocephalus and response to shunting in children.

Read publication ↗