Proteomics-Enabled Deep Learning Machine Algorithms Can Enhance Prediction of Mortality
Journal of the American College of Cardiology, 2021
Unterhuber M., Kresoja K., Rommel K., Besler C., Baragetti A., Klöting N., Ceglarek U., Blüher M., Scholz M., Catapano A., Thiele H., Lurz P.
Disease area | Application area | Sample type | Products |
---|---|---|---|
CVD | Patient Stratification | Plasma | O Olink Target 96 |
Abstract
Background
Individualized risk prediction represents a prerequisite for providing personalized medicine.
Objectives
This study compared proteomics-enabled machine-learning (ML) algorithms with classical and clinical risk prediction methods for all-cause mortality in cohorts of patients with cardiovascular risk factors in the LIFE-Heart Study, followed by validation in the PLIC (Progressione della Lesione Intimale Carotidea) study.
Methods
Using the OLINK-Cardiovascular-II panel, 92 proteins were measured in a cohort of 1,998 individuals from the LIFE-Heart Study (derivation) and 772 subjects from the PLIC cohort (external validation). We constructed protein-based mortality prediction models using eXtreme Gradient Boosting (XGBoost) and a neural network, comparing the prediction performance with classical clinical risk scores (Systemic Coronary Risk Evaluation, Framingham), logistic and Cox regression models.
Results
All-cause mortality occurred in 156 (8%) patients in the internal validation and 68 (9%) patients in the external validation cohort, within a median follow-up of 10 and 11 years, respectively. On internal and external validation, the Framingham Risk Score achieved areas under the curve (AUCs) of 0.64 (95% CI: 0.59-0.68) and 0.65 (95% CI: 0.58-0.74), logistic regression AUCs of 0.65 (95% CI: 0.57-0.73) and 0.67 (95% CI: 0.59-0.74), Cox regression AUCs of 0.55 (95% CI: 0.51–0.59) and 0.65 (95% CI: 0.57-0.73), the XGBoost classifier AUCs of 0.83 (95% CI: 0.79-0.87) and 0.91 (95% CI: 0.86-0.95), the XGBoost survival estimator AUCs of 0.83 (95% CI: 0.79-0.87) and 0.93 (95% CI: 0.88-0.97), and the neural network AUCs of 0.87 (95% CI: 0.83-0.91) and 0.94 (95% CI: 0.90-0.98), respectively (modern vs classical ML: P < 0.001).ConclusionsML-driven multiprotein risk models outperform classical regression models and clinical scores for prediction of all-cause mortality in patients at increased cardiovascular risk.