Olink

Olink®
Part of Thermo Fisher Scientific

Quantitative Proteomics Indicate Radical Removal of Non-Small Cell Lung Cancer and Predict Outcome

Biomedicines, 2022

Bodén E., Andreasson J., Hirdman G., Malmsjö M., Lindstedt S.

Disease areaApplication areaSample typeProducts
Oncology
Patient Stratification
Plasma
Olink Target 96

Olink Target 96

Abstract

Non-small cell lung cancer (NSCLC) is associated with low survival rates, often due to late diagnosis and lack of personalized medicine. Diagnosing and monitoring NSCLC using blood samples has lately gained interest due to its less invasive nature. In the present study, plasma was collected at three timepoints and analyzed using proximity extension assay technology and quantitative real-time polymerase chain reaction in patients with primary NSCLC stages IA–IIIA undergoing surgery. Results were adjusted for patient demographics, tumor, node, metastasis (TNM) stage, and multiple testing. Major histocompatibility (MHC) class 1 polypeptide-related sequence A/B (MIC-A/B) and tumor necrosis factor ligand superfamily member 6 (FASLG) were significantly increased post-surgery, suggesting radical removal of cancerous cells. Levels of hepatocyte growth factor (HGF) initially increased postoperatively but were later lowered, potentially indicating radical removal of malignant cells. The levels of FASLG in patients who later died or had a relapse of NSCLC were lower at all three timepoints compared to surviving patients without relapse, indicating that FASLG may be used as a prognostic biomarker. The biomarkers were confirmed using microarray data. In conclusion, quantitative proteomics could be used for NSCLC identification but may also provide information on radical surgical removal of NSCLC and post-surgical prognosis.

Read publication ↗